ANSWERS!

<u>DIRECTIONS</u>: In the following diagram, $\overrightarrow{BE} \perp \overleftrightarrow{AC}$, $\overrightarrow{BD} \perp \overrightarrow{BF}$, $m \not \triangle DBE = 5x$, and $m \not \triangle EBF = 3x - 6$. Find the value of x. Show your work.

1. x = 12

<u>DIRECTIONS</u>: In the following diagram, $\overrightarrow{BF} \perp \overrightarrow{AE}$, $m \not = BOC = 30$, and $m \not = GOH = 45$. Find the measures of the angles.

2.
$$m \not= COH = 135^{\circ}$$

3.
$$m \not = HOF = 75^{\circ}$$

4.
$$m \not \Delta DOE = 15^{\circ}$$

5.
$$m \not= COA = 120^{\circ}$$

<u>DIRECTIONS</u>: Name the definition, postulate, theorem, or property that most accurately justifies each statement. Use the following diagram.

$$CX + XD = CD$$

If
$$X$$
 is midpoint of \overline{AB} , then $AX = \frac{1}{2}AB$

8. Vertical
$$\angle$$
s are \cong

$$\angle AXC \cong \angle DXB$$

If
$$\overrightarrow{XE}$$
 bisects $\angle CXB$, then $m \angle 1 = m \angle 2$

$$m \not AXE + m \not EXB = 180$$

$$XE = XE$$

<u>DIRECTIONS</u>: Name the definition, postulate, theorem, or property that most accurately justifies each statement. Use the following diagram.

13. Definition of
$$\bot$$
 lines

If
$$\overrightarrow{MG} \perp \overrightarrow{KL}$$
, then $m \not = 5 = 90$

$$m \not\downarrow 3 + m \not\downarrow 4 = m \not\downarrow MIL$$

If
$$45 + m44 = m46 + m44$$
, then $m45 = m46$

16. All right
$$\not\preceq$$
s are \cong

If
$$45$$
 and 46 are right angles, then $45 \cong 46$

If
$$\overline{KI}\cong \overline{IL}$$
 , then I is the midpoint of \overline{KL}

If
$$KI = IL$$
 and $MI = IL$,
then $KI = MI$

DIRECTIONS: Supply the missing reasons.

19

Given: RT = WY; ST = WX

Prove: RS = XY

1.
$$RT = WY$$

2.
$$RT = RS + ST$$
; $WY = WX + XY$

$$3. RS + ST = WX + XY$$

$$ST = WX$$

$$\mathbf{5.} \ \ RS \qquad = \qquad XY$$

1. GIVEN

2. Segment Addition Postulate

3. Substitution OR Transitive Property

4. GIVEN

5. Subtraction Property

20

Given: $41 \cong 42$

Prove: \overrightarrow{XF} bisects $\angle AXE$

- **1.** ⋠1 ≅ ⋠2
- **3.** ≰3 ≅ ≰4
- **4.** \overrightarrow{XF} bisects $\angle AXE$

1. GIVEN

2. Vertical \preceq s are \cong

3. Substitution OR Transitive Property

21

Given: $\overrightarrow{OQ} \perp \overrightarrow{SV}$; $\overrightarrow{OR} \perp \overrightarrow{PT}$

Prove: $41 \cong 43$

1.
$$\overrightarrow{OQ} \perp \overrightarrow{SV}$$
; $\overrightarrow{OR} \perp \overrightarrow{PT}$

2.
$$m \angle QOV = 90$$
; $m \angle ROP = 90$

3.
$$m \not= QOV = m \not= 2 + m \not= 3$$
; $m \not= ROP = m \not= 1 + m \not= 2$

4.
$$90 = m \pm 2 + m \pm 3$$
; $90 = m \pm 1 + m \pm 2$

5.
$$42$$
 and 43 are comp $4s$; 41 and 42 are comp $4s$

1. GIVEN

2. Definition of \bot lines

3. ∡ Addition Postulate

4. Substitution OR

Transitive Property

5. Definition of complementary ≼s

6. \cong Comps Theorem

22

Given: 43 and 42 are supp 4s

Prove: $41 \cong 43$

- **7.** ≰3 and ≰2 are supp ≰s
- **8.** $m \ne 1 + m \ne 2 = 180$
- **9.** 41 and 42 are supp 4s
- **10.** ≰1 ≅ ≰3

- 1. GIVEN
- 2. Linear pair ≼s = 180 OR ≰ Addition Postulate
- 3. Definition of supplementary ≰s
- **4.** \cong Supps Theorem